LearnLib 0.17.0 API

Packages 
Package Description
de.learnlib  
de.learnlib.acex
This package provides interfaces and classes for the abstract counterexample analysis framework described in the paper An Abstract Framework for Counterexample Analysis in Active Automata Learning by Malte Isberner and Bernhard Steffen.
de.learnlib.algorithm
This package (including sub-packages) contains the basic interfaces and classes of learning algorithms of LearnLib.
de.learnlib.algorithm.aaar
This package (and sub-packages) provides the implementation of the AAAR learning algorithm as described in the paper Automata Learning with Automated Alphabet Abstraction Refinement by Falk Howar, Bernhard Steffen, and Maik Merten.
de.learnlib.algorithm.aaar.abstraction  
de.learnlib.algorithm.aaar.explicit  
de.learnlib.algorithm.aaar.generic  
de.learnlib.algorithm.adt
This package (and sub-packages) provides the implementation of the ADT learning algorithm as described in the Master thesis Active Automata Learning with Adaptive Distinguishing Sequences by Markus Frohme.
de.learnlib.algorithm.adt.ads  
de.learnlib.algorithm.adt.adt  
de.learnlib.algorithm.adt.api  
de.learnlib.algorithm.adt.automaton  
de.learnlib.algorithm.adt.config  
de.learnlib.algorithm.adt.config.model  
de.learnlib.algorithm.adt.config.model.calculator  
de.learnlib.algorithm.adt.config.model.extender  
de.learnlib.algorithm.adt.config.model.replacer  
de.learnlib.algorithm.adt.learner  
de.learnlib.algorithm.adt.model  
de.learnlib.algorithm.adt.util  
de.learnlib.algorithm.dhc
This package (and sub-packages) provides the implementation of the DHC learning algorithm as described in the paper Automata Learning with on-the-Fly Direct Hypothesis Construction by Maik Merten, Falk Howar, Bernhard Steffen, and Tiziana Margaria.
de.learnlib.algorithm.dhc.mealy  
de.learnlib.algorithm.kv
This package (and sub-packages) provides the implementation of the learning algorithm described in the book "An Introduction to Computational Learning Theory" by Michael Kearns and Umesh Vazirani.
de.learnlib.algorithm.kv.dfa  
de.learnlib.algorithm.kv.mealy  
de.learnlib.algorithm.lstar
This package (and sub-packages) provides the implementation of the L* learning algorithm described in the paper Learning Regular Sets from Queries and Counterexamples by Dana Angluin as well as multiple variations thereof.
de.learnlib.algorithm.lstar.ce  
de.learnlib.algorithm.lstar.closing  
de.learnlib.algorithm.lstar.dfa  
de.learnlib.algorithm.lstar.mealy  
de.learnlib.algorithm.lstar.moore  
de.learnlib.algorithm.malerpnueli
This package (and sub-packages) provides the implementation of the L* variation based on the paper On the Learnability of Infinitary Regular Sets by Oded Maler and Amir Pnueli.
de.learnlib.algorithm.nlstar
This package (and sub-packages) provides the implementation of the NL* learning algorithm as described in the paper Angluin-Style Learning of NFA by Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker.
de.learnlib.algorithm.observationpack
This package (and sub-packages) provides the implementation of the Observation-Pack learning algorithm as described in the PhD thesis Active learning of interface programs by Falk Howar.
de.learnlib.algorithm.observationpack.dfa  
de.learnlib.algorithm.observationpack.hypothesis  
de.learnlib.algorithm.observationpack.mealy  
de.learnlib.algorithm.observationpack.moore  
de.learnlib.algorithm.observationpack.vpa
This package (and sub-packages) provides the implementation of the VPA adaption of the Observation-Pack learning algorithm as discussed in the PhD thesis Foundations of Active Automata Learning: An Algorithmic Perspective by Malte Isberner.
de.learnlib.algorithm.observationpack.vpa.hypothesis  
de.learnlib.algorithm.oml
This package (and sub-packages) provides the implementations of various learning algorithms based on the "optimal MAT learning" concept as described in the paper Active Automata Learning as Black-Box Search and Lazy Partition Refinement by Falk Howar and Bernhard Steffen.
de.learnlib.algorithm.oml.lstar  
de.learnlib.algorithm.oml.ttt  
de.learnlib.algorithm.oml.ttt.dfa  
de.learnlib.algorithm.oml.ttt.dt  
de.learnlib.algorithm.oml.ttt.mealy  
de.learnlib.algorithm.oml.ttt.pt  
de.learnlib.algorithm.oml.ttt.st  
de.learnlib.algorithm.ostia
This package (and sub-packages) provides the implementation of the "onward subsequential transducer inference algorithm" (OSTIA) learning algorithm as presented in the paper Learning Subsequential Transducers for Pattern Recognition Interpretation Tasks by Jose Oncina, Pedro García, and Enrique Vidal.
de.learnlib.algorithm.procedural
This package (and sub-packages) provides the implementations of various learning algorithms for systems of procedural automata such as the ones described in the papers Compositional learning of mutually recursive procedural systems and From Languages to Behaviors and Back by Markus Frohme and Bernhard Steffen.
de.learnlib.algorithm.procedural.adapter.dfa  
de.learnlib.algorithm.procedural.adapter.mealy  
de.learnlib.algorithm.procedural.sba  
de.learnlib.algorithm.procedural.sba.manager  
de.learnlib.algorithm.procedural.spa  
de.learnlib.algorithm.procedural.spa.manager  
de.learnlib.algorithm.procedural.spmm  
de.learnlib.algorithm.procedural.spmm.manager  
de.learnlib.algorithm.rivestschapire
This package (and sub-packages) provides the implementation of the L* variation based on the paper Inference of finite automata using homing sequences by Ronald L. Rivest and Robert E. Schapire.
de.learnlib.algorithm.rpni
This package (and sub-packages) provides the implementation of (a blue-fringe version of) the "regular positive negative inference" (RPNI) learning algorithm as presented in the paper Inferring regular languages in polynomial update time by Jose Oncina and Pedro García.
de.learnlib.algorithm.ttt
This package (and sub-packages) provides the implementation of the TTT algorithm as described in the paper The TTT Algorithm: A Redundancy-Free Approach to Active Automata Learning by Malte Isberner, Falk Howar, and Bernhard Steffen.
de.learnlib.algorithm.ttt.base  
de.learnlib.algorithm.ttt.dfa  
de.learnlib.algorithm.ttt.mealy  
de.learnlib.algorithm.ttt.moore  
de.learnlib.algorithm.ttt.vpa
This package (and sub-packages) provides the implementation of the VPA adaption of the TTT learning algorithm as presented in the PhD thesis Foundations of Active Automata Learning: An Algorithmic Perspective by Malte Isberner.
de.learnlib.buildtool
This package (including sub-packages) contains utility code for the build process of LearnLib.
de.learnlib.buildtool.refinement.annotation  
de.learnlib.buildtool.refinement.processor  
de.learnlib.counterexample
This package contains a collection of standard algorithms for handling counterexamples in automata learning.
de.learnlib.datastructure.discriminationtree  
de.learnlib.datastructure.discriminationtree.iterators  
de.learnlib.datastructure.discriminationtree.model  
de.learnlib.datastructure.list  
de.learnlib.datastructure.observationtable  
de.learnlib.datastructure.observationtable.reader  
de.learnlib.datastructure.observationtable.writer  
de.learnlib.datastructure.pta  
de.learnlib.datastructure.pta.config  
de.learnlib.datastructure.pta.wrapper  
de.learnlib.driver  
de.learnlib.driver.reflect  
de.learnlib.driver.simulator  
de.learnlib.example
This package (including sub-packages) contains example models of various types used in integration-tests.
de.learnlib.example.dfa  
de.learnlib.example.mealy  
de.learnlib.example.moore  
de.learnlib.example.sba  
de.learnlib.example.spa  
de.learnlib.example.spmm  
de.learnlib.example.sst  
de.learnlib.example.vpa  
de.learnlib.exception  
de.learnlib.filter.cache  
de.learnlib.filter.cache.dfa  
de.learnlib.filter.cache.mealy  
de.learnlib.filter.cache.moore  
de.learnlib.filter.cache.sul  
de.learnlib.filter.reuse  
de.learnlib.filter.reuse.tree  
de.learnlib.filter.statistic  
de.learnlib.filter.statistic.learner  
de.learnlib.filter.statistic.oracle  
de.learnlib.filter.statistic.sul  
de.learnlib.logging  
de.learnlib.mapper  
de.learnlib.oracle
This package (including sub-packages) contains the basic interfaces and classes for describing and implementing various types of oracles used throughout LearnLib.
de.learnlib.oracle.emptiness  
de.learnlib.oracle.equivalence  
de.learnlib.oracle.equivalence.mealy  
de.learnlib.oracle.equivalence.sba  
de.learnlib.oracle.equivalence.spa  
de.learnlib.oracle.equivalence.spmm  
de.learnlib.oracle.equivalence.vpa  
de.learnlib.oracle.membership  
de.learnlib.oracle.parallelism  
de.learnlib.oracle.property  
de.learnlib.query  
de.learnlib.setting  
de.learnlib.setting.sources  
de.learnlib.statistic  
de.learnlib.sul
This package (and related packages) contains interfaces and classes for formalizing access to systems under learning (SULs).
de.learnlib.testsupport
This package (including sub-packages) contains utility code for formalizing test-cases.
de.learnlib.testsupport.it.learner  
de.learnlib.util
This package (and sub-packages) provide general utilities used throughout LearnLib.
de.learnlib.util.mealy  
de.learnlib.util.moore  
de.learnlib.util.nfa  
de.learnlib.util.statistic