Class ClassicLStarMoore<I,O>
- java.lang.Object
-
- de.learnlib.algorithm.lstar.AbstractLStar<A,I,D>
-
- de.learnlib.algorithm.lstar.AbstractAutomatonLStar<A,I,D,S,T,SP,TP,AI>
-
- de.learnlib.algorithm.lstar.AbstractExtensibleAutomatonLStar<MooreMachine<?,I,?,O>,I,O,Integer,Integer,O,Void,CompactMoore<I,O>>
-
- de.learnlib.algorithm.lstar.moore.ClassicLStarMoore<I,O>
-
- Type Parameters:
I
- input symbol typeO
- output symbol type
- All Implemented Interfaces:
GlobalSuffixLearner<MooreMachine<?,I,?,O>,I,O>
,LearningAlgorithm<MooreMachine<?,I,?,O>,I,O>
,ObservationTableFeature<I,O>
,OTLearner<MooreMachine<?,I,?,O>,I,O>
,Resumable<AutomatonLStarState<I,O,CompactMoore<I,O>,Integer>>
,SupportsGrowingAlphabet<I>
public class ClassicLStarMoore<I,O> extends AbstractExtensibleAutomatonLStar<MooreMachine<?,I,?,O>,I,O,Integer,Integer,O,Void,CompactMoore<I,O>>
AMooreMachine
-based specialization of the classic L* learner.
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from class de.learnlib.algorithm.lstar.AbstractExtensibleAutomatonLStar
AbstractExtensibleAutomatonLStar.BuilderDefaults
-
Nested classes/interfaces inherited from interface de.learnlib.algorithm.GlobalSuffixLearner
GlobalSuffixLearner.GlobalSuffixLearnerDFA<I>, GlobalSuffixLearner.GlobalSuffixLearnerMealy<I,O>
-
Nested classes/interfaces inherited from interface de.learnlib.algorithm.LearningAlgorithm
LearningAlgorithm.DFALearner<I>, LearningAlgorithm.MealyLearner<I,O>, LearningAlgorithm.MooreLearner<I,O>, LearningAlgorithm.NFALearner<I>
-
Nested classes/interfaces inherited from interface de.learnlib.datastructure.observationtable.OTLearner
OTLearner.OTLearnerDFA<I>, OTLearner.OTLearnerMealy<I,O>, OTLearner.OTLearnerMoore<I,O>
-
-
Field Summary
-
Fields inherited from class de.learnlib.algorithm.lstar.AbstractExtensibleAutomatonLStar
cexHandler, closingStrategy, initialPrefixes, initialSuffixes
-
Fields inherited from class de.learnlib.algorithm.lstar.AbstractAutomatonLStar
internalHyp, stateInfos
-
Fields inherited from class de.learnlib.algorithm.lstar.AbstractLStar
alphabet, oracle, table
-
-
Constructor Summary
Constructors Constructor Description ClassicLStarMoore(Alphabet<I> alphabet, MembershipOracle<I,O> oracle, List<Word<I>> initialPrefixes, List<Word<I>> initialSuffixes, ObservationTableCEXHandler<? super I,? super O> cexHandler, ClosingStrategy<? super I,? super O> closingStrategy)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description MooreMachine<?,I,Integer,O>
getHypothesisModel()
Returns the current hypothesis model.protected SuffixOutput<I,O>
hypothesisOutput()
protected O
stateProperty(ObservationTable<I,O> table, Row<I> stateRow)
Derives a state property from the corresponding row.protected Void
transitionProperty(ObservationTable<I,O> table, Row<I> stateRow, int inputIdx)
Derives a transition property from the corresponding transition.-
Methods inherited from class de.learnlib.algorithm.lstar.AbstractExtensibleAutomatonLStar
initialPrefixes, initialSuffixes, refineHypothesisInternal, selectClosingRows
-
Methods inherited from class de.learnlib.algorithm.lstar.AbstractAutomatonLStar
addAlphabetSymbol, createState, doRefineHypothesis, resume, setTransition, startLearning, suspend, updateInternalHypothesis
-
Methods inherited from class de.learnlib.algorithm.lstar.AbstractLStar
addGlobalSuffixes, analyzeInconsistency, completeConsistentTable, getGlobalSuffixes, getObservationTable, incorporateCounterExample, refineHypothesis
-
-
-
-
Method Detail
-
getHypothesisModel
public MooreMachine<?,I,Integer,O> getHypothesisModel()
Description copied from interface:LearningAlgorithm
Returns the current hypothesis model.N.B.: By the contract of this interface, the model returned by this method may not be modified (i.e., M generally should refer to an immutable interface), and its validity is retained only until the next invocation of
LearningAlgorithm.refineHypothesis(DefaultQuery)
. If older hypotheses have to be maintained, a copy of the returned model must be made.Please note that it should be illegal to invoke this method before an initial invocation of
LearningAlgorithm.startLearning()
.- Returns:
- the current hypothesis model.
-
stateProperty
protected O stateProperty(ObservationTable<I,O> table, Row<I> stateRow)
Description copied from class:AbstractAutomatonLStar
Derives a state property from the corresponding row.- Specified by:
stateProperty
in classAbstractAutomatonLStar<MooreMachine<?,I,?,O>,I,O,Integer,Integer,O,Void,CompactMoore<I,O>>
- Parameters:
table
- the current observation tablestateRow
- the row for which the state is created- Returns:
- the state property of the corresponding state
-
transitionProperty
protected Void transitionProperty(ObservationTable<I,O> table, Row<I> stateRow, int inputIdx)
Description copied from class:AbstractAutomatonLStar
Derives a transition property from the corresponding transition.N.B.: Not the transition row is passed to this method, but the row for the outgoing state. The transition row can be retrieved using
Row.getSuccessor(int)
.- Specified by:
transitionProperty
in classAbstractAutomatonLStar<MooreMachine<?,I,?,O>,I,O,Integer,Integer,O,Void,CompactMoore<I,O>>
stateRow
- the row for the source stateinputIdx
- the index of the input symbol to consider- Returns:
- the transition property of the corresponding transition
-
hypothesisOutput
protected SuffixOutput<I,O> hypothesisOutput()
- Specified by:
hypothesisOutput
in classAbstractLStar<MooreMachine<?,I,?,O>,I,O>
-
-